State Space Reduction by Proving Confluence

Stefan Blom and Jaco van de Pol

CWI, P.O.-box 94.079, 1090 GB Amsterdam, The Netherlands
{sccblom,vdpol}@cwi.nl

Abstract. We present a modular method for on-the-fly state space re-
duction. The theoretical foundation of the method is a new confluence
notion for labeled transition systems. The method works by adding con-
fluence information to the symbolic representation of the state space. We
present algorithms for on-the-fly exploration of the reduced state space,
for detection of confluence properties and for a symbolic reduction, called
prioritization. The latter two algorithms rely on an automated theorem
prover to derive the necessary information. We also present some case
studies in which tools that implement these algorithms were used.

Keywords: Labeled transition systems, on-the-fly state space reduction,
partial order reduction, confluence, theorem proving, symbolic transfor-
mation, branching bisimulation, 4CRL tool set

1 Introduction

A popular approach to the verification of distributed systems is based on an ex-
haustive state space exploration. This approach suffers from the well-known state
space explosion problem. Much research is devoted to algorithms that generate a
reduced, but essentially equivalent, state space. Collectively, these methods are
called partial-order reduction methods. In this paper we introduce a new method
for generating a reduced state space that is branching bisimilar with the original
one.

The method is based on a subtle variation on the confluence-notion for labeled
transition systems (LTS). Invisible (7) steps in the LTS may be confluent or not.
All states in a subset connected by confluent steps are branching bisimilar. By
virtue of our new confluence notion, this subset may be replaced by a particular
representative state, and only transitions outgoing from this representative need
to be explored. This is explained in Section 2.

In order to apply confluence for the immediate generation of the reduced
state space, the confluent transitions must be detected before generating the
LTS. This is solved in Section 3 by representing the system specification in an
intermediate format, called linear process. A specification in this format con-
sists of a finite number of symbolic transitions. The confluence property of each
symbolic transition (or in fact a stronger approximation) can be expressed as a
Boolean formula over the data, types that occur in the specification. This for-
mula is solved by a separate automated theorem prover. If the formula can be

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 596-609, 2002.
© Springer-Verlag Berlin Heidelberg 2002

State Space Reduction by Proving Confluence 597

proved, the transition is marked as confluent, allowing for some reduction of the
corresponding state space.

Iq some cases it is even possible to feed the information on confluent symbolic
transitions back to the symbolic level. This results in a transformation on linear
processes, which we call symbolic prioritization, described in Section 4. Conflu-
ence detection and symbolic prioritization can be applied to infinite state spaces
as well. In Section 5 we show a number of applications, to which we applied our
s.tate space reduction techniques. The example in Section 5.2 goes beyond tradi-
tional partial-order reduction methods, which are based on super-determinism.

Implementation. Our ideas are implemented in the context of the #CRL tool
set [3]. The basic functionality of this tool set is to generate a state space (LTS)
out f’f a uCRL specification. To this end linear processes are used as an inter-
mediate representation. This contributes to the modularity of the tool set. In
particular, several optimizations are implemented as separate tools that trans-
form a linear process, aiming at a reduction of the state space to be generated.

’.I‘o this tool set, we added symbolic prioritization as yet another optimizer
on linear processes. Moreover, the on-the-fly reduction algorithm has been inte-
grated in the state space generator of the tool set.

With the approach in this paper we further contribute to modularity. In
particular, we defined a notion of confluence, which is quite liberal, but nev-
ertheless sufficient to ensure correctness of the on-the-fly reduction algorithm.
Finding confluent transitions is a separate task. In fact, while the maximal set
of confluent transitions is hard to detect, it is perfectly acceptable if actual con-
fluence detection algorithms only find a subset.

We have used an automated theorem prover to find a reasonable subset of
confluent transitions, but an alternative approach could be to prove confluence
by hand, or with interactive theorem provers. In cases where the specification is
automatically generated from source code, it is sometimes even possible to know

a priori that certain transitions are confluent.

Related Work. Several partial order reduction algorithms that preserve branch-
ing bisimilarity have been proposed in the literature [19,15,14,1]. These ap-
proaches also allow the reduction to & representative subset of all states. Some
of these approaches restrict attention to deterministic transitions. All these ap-
proaches involve some notion of determinacy. We compare our approach with [19],
where criteria A5 and A8 for obtaining branching bisimilar reduced state spaces

are introduced.

Criterion A
provided it is an invisible super-
a transition need not be determini

8 allows the selection of one outgoing transition from & state,
deterministic transition. In our approach, such

stic, but only confluent, which means that

eventually the computation paths reach the same state. It can be pmvefl 'that
the set of super-deterministic transitions forms a confluent set of T-transitions,
but not vice versa. Criterion A5 prevents that & transition is postponed foreve;r.
This is implemented in [14] by the algorithm Twophase. In phase one, a state is

598 Stefan Blom and Jaco van de Pol

expanded by repeatedly applying deterministic invisible transitions; the result is
then fully expanded in phase two. Our algorithm can be seen as a modification:
we take confluent transitions until a terminal strongly connected component
(SCQ) is reached, instead of deterministic transitions only.

Our method has some similarities with [1], where sequences of a component’s
local transitions are compressed to a single transition. Also, they have a detection
phase and a generation phase. However, the setting is quite different because that
paper aims at compositional model checking, whereas our method is independent
of the structure of the specification. Moreover, they only prove preservation of
weak-simulation equivalence.

Several confluence notions have been studied in the setting of branching
bisimulation [12,20,9]. In [2] these notions are compared systematically. In sum-
mary, the notions in [12,20] only deal with global confluence, whereas we deal
with partial confluence, i.e. it suffices to identify a confluent subset of the 7
transitions. In practical applications it is seldom the case that all m-transitions
are confluent. The confluence notion in [20] has the nice theoretical property
that the 7-transition relation is confluent, if and only if it only connects states
that are branching bisimilar. For reduction purposes, this would require to con-
sider all outgoing transitions in each terminal SCC. Our notion of confluence
is slightly stronger, and as a consequence we only have to take the outgoing
transitions from a single member of each terminal SCC.

The confluence notion in [12] was adapted to partial confluence already in [9].
In order to apply it for state space reduction, this notion required the absence of
7-loops. [9] introduced an algorithm to reduce concrete state spaces as follows.
First, all strongly connected 7-components are collapsed, in order to get rid of
7-cycles. Then, the maximal set of strongly confluent 7-steps is computed, and
strongly confluent T-transitions are given priority over other transitions. We note
that these steps can only be applied after generating the unreduced state space.
Especially absence of 7-loops is a severe obstacle for on-the-fly generation. In our
paper, we use theorem proving to find (not necessarily all) confluent symbolic
transitions in the specification. Our modified confluence notion works in the
presence of 7-loops. So we provide a genuine on-the-fly reduction method. Our
new method even allows to perform some optimization at specification level
already.

2 Confluence and Reduction On-the-Fly

In this section we present the confluence property, a state space reduction method
based on the confluence property and an algorithm that computes these reduced
state spaces “on-the-fly”.

We use labeled transition systems (LTS) to model states spaces. Confluence
is a property of sets of invisible transitions in an LTS. Any set of transitions
induces an equivalence relation on the set of states, which identifies states in
the same component. If a set of invisible transitions is confluent then the in-
duced equivalence relation is a branching bisimulation. Moreover, each finite

State Space Reduction by Proving Confluence 599

equivalence class has a representative, whose transitions are the same as those
of the whole equivalence class. Because of these representatives, we can give an
algorithm that computes the reduced state space without computing the whole
original state space.

Because the reduction preserves branching bisimilarity, the reduced state
space can be used to check all properties of the original system that are express-
ible in action based CTL*-X (computation tree logic without next-time) or HML
(Hennessy-Milner logic).

2.1 Confluence

The labels of our LTSs will be taken from a given set Act. We assume that Act
contains a special element 7, representing the invisible action.

Definition 1 (LTS). A labeled transition system is a triple (S,—, so), consist-
ing of a set of states S, transitions —C S x Act x S and an initial state so € S.

We write s = ¢ for (s, a, t) €é—. Moreover, % denotes the transitive reﬂexiye
closure of %, and «% denotes the equivalence relation induced by -, i.e. its
reflexive, transitive, symmetric closure. We write s =2 ¢ if either s % t,ora =T
and s = t. Note that in s =% ¢ only invisible steps are optional. Given a subset
of T-transitions ¢ C-5, we write s < ¢ for (s,t) € c. Finally, we write S £, Sa
to denote that LTSs S; and S, are branching bisimilar [6].)

The idea is that a subset c of the set of invisible transitions is conﬂggnt if
the steps in ¢ cannot make real choices. This is formalized with two co-ndztlons.
First, if in a certain state two different sequences of ¢ steps are POSSlbl‘f then
these sequences can be extended with more c steps to sequences that epd in the
same state. Second, if in a state both a ¢ step and an a step are possible then
after doing the c¢ step, the a step is still possible (optional if @ = 7) and the
results of the two a steps are in the same ¢ equivalence class.

Definition 2 (confluence). Let c be a subset of . Then c is confluent iff the
following diagrams hold (for all a € Act):

Te

J i
a

N coincides
As a consequence, the equivalence relation« induced by a mnﬁuellat cc:;onn
with ~To». «Z=. We can view - as a directed graph. A strongly connected

in thi i i f states X, such that for all
onent (SCC) in this graph is a maximal set o . oo
gollfrn ep X vsjle }Eave s)—ﬁ»t and t-7% 5. A terminal SCC (TSCC) is an SCC X withou

outgoing edges, i.e. for all s € X, if Tt then t € X.

600 Stefan Blom and Jaco van de Pol

2.2 Reduction

As mentioned before, the equivalence relation induced by a confluent set is a
branching bisimulation. By taking the original state space modulo this equiva-
lence one can reduce the state space. An effective way of computing the transi-
tions of the reduced state space is to find a representative of each equivalence
class, whose transitions are precisely the transitions of the equivalence class. As
representative of a class, we can choose any element in a TSCC of this class, if
that exists. Note that in finite graphs every equivalence class contains a TSCC.
Because of confluence this TSCC is unique. The notion of representation map is
based on this idea. The first condition forces every element in an equivalence class
to have the same representative. The second condition forces this representative
to be in the TSCC.

Definition 3 (representation map). Given an LTS § = (S,—,s0) with a
confluent subset of T-steps labeled ¢, a map ¢ : S — S is called a representation
map if Vs,te §:s Tt = ¢(s) = ¢(t) and Vs € S : s &(s).

Based on the notion of representation map we can define a reduced LTS.
The set of states of the reduced LTS will be the set of representatives. For
every transition from a representative to a destination state in the original LTS,
we include a transition from that representative to the representative of that
destination in the reduced LTS. Finally, the new initial state is the representative
of the old initial state. In [2] it is proven that the reduced LTS is branching
bisimilar to the original LTS.

Definition 4 (LTS modulo ¢). Given a confluent c C-" and a representation
map ¢, we define S/y = ($(9), = #(s0)), where s —;-> tifa# T, and 3t 1 s St/

and ¢(t') = t. As usual, $(S) = {¢(s) | s € S}.

Theorem 5 ([2]). Given a transition system S with a confluent subset of
T-steps labeled ¢ and a representation map ¢, we have that S =, S/s -

2.3 Algorithm for Reduction On-the-Fly

The es'sential functions in an “on-the-fly” interface for an LTS are a function
that y.'lelds the initial state and a function that computes outgoing transitions
of a given state. Given an on-the-fly representation of an LTS and the label for
confluent transitions, the key to providing an on-the-fly representation of the
reduced LTS is a function that computes a representation map (see Figure 1).
Such a function must return a representative from the terminal strongly con-
;1ected component of the Te graph. Moreover, this representative must be unique
~<‘)r all elemenFs of an equivalence class. We implemented the latter requirement
almp(liy by maintaining a table of pairs (s, Representative(s)) that we have com-
;?utg S0 far. Tq c?mpute.a representative if it is not in the table, we use a
variation on Tarjan’s algorithm for finding strongly connected components [18].

State Space Reduction by Proving Confluence 601

| ReducedInit()
return Representative(Init())

ReducedNext(state)
return { (a,Representative(s)) | a # 7., (a,s) € Next(state) }

Fig. 1.

More precisely, we perform a depth first search of the graph of confluent tran-
Sitions until we find a state with a known representative or until we backtrack
from a node where we entered a strongly connected component. The first thus
encountered component is the TSCC. In the latter case this node is .chosen as
the representative, and stored in the table (see [2] for a detailed algorithm).

The table consumes a significant amount of memory. If this is unacceptable,
a total order on the set of states can be provided, and one can choose the le.:ast
State in the TSCC as the representative and recompute the TSCC each time
rather than storing it.

3 Confluence Detection by Theorem Proving

In the previous section we discussed a state space generation algorithm, .“fhmh
applies reduction on-the-fly, based on some information on conﬂuex}t transitions,
In this section we show how this information is obtained. In particular, by ex-
ploiting a special format for the specification, we show that.(Stmngegrzgp?;f;
mations of) confluence properties can be expressed by quantifier-free Over

formulae. These formulae can be solved by a separate automated theorem prover.

3.1 Symbolic Specifications in uCRL

‘We implemented our ideas in the setting of the #CRL fo@allim' d‘: t{:gﬂg’f;ﬁ
ification [11,3] consists of an algebraic specification, defining ifh: allel compo-
a process specification, defining the system under scrutiny as " Tx;mm We
sition of several components, each specified as a process af:sf;im@d to a linear
utilize the result in [10], that such specifications can be tr 4

process, without a considerable blow-up in size. - bles d. a initial state
A linear process consists of a vector of -gl_obzlustat;e var;u ‘ s Thiess -
vector dp, and a set of program rules, tradition. f;/cauﬁdacﬁon/ mmsmyie, similar to

i i ditio 1.
mands define the process behaviour in a con bave the following form?:
I/0O-automata or UNITY programs. These summands

{> [bi(de)] = aid, e:); d = gi(d, &) }ier

—— . concrete uCRL syntax.
1 We focus on the essential ingredients, rather than

602 Stefan Blom and Jaco van de Pol

We assume that the data algebra contains the special sorts Bool for booleans
and Act for external actions. In the summands above, we have that:

— ¢; is a vector of local variables, used for instance to model arbitrary input
of this summand.

— bi(d, e;) is a term of type Bool, with variables among d and e;, denoting the
condition or guard of the summand.

— a;(d, e;) is a term of type Act, with variables among d and e;, denoting the
action executed by this summand.

— gi(d,e;) is a vector of terms, whose sorts match the vector of global state
variables. These denote the next state.

Each summand specifies a structural transition — as follows:
d —C:'.—-> d' iff Te;. bi(d, ei) ANd = gi(d, ei) Na= Cbi(d, ei)

Together, a linear process specifies a structural labeled transition system
(Z,(+)ier, 80), from which the ordinary LTS can be obtained by taking the
union of all structural transitions. Here a state in X is a vector of data values
for the global variables; s is the initial state vector; I is the (index) set of the
summands; — is the structural transition generated by summand %, which is a
subset of the transitions of the whole LTS.

Note that a structural transition defined in this way is partial (due to the
enabling condition b) and non-deterministic (due to choice involved in Je). Also
note that one summand may generate transitions with various labels. A similar
decoupling of action labels and structural transitions occurs in [19].

3.2 Generation of Confluence Formulae

Owing to the format of linear processes, commutation formulae can be generated.
In order to facilitate automated theorem proving, we try to avoid quantifiers. The
generated formulae will be Boolean expressions over the user defined abstract
data types, with implicit universal quantification.

To get the formulae in this form, we only consider a special case, which
occurs frequently in practice. So in fact we detect a stronger approximation of
confluence. Consider two divergent steps of summands ¢ and j:

> [bild,)] = ai(d, e:);d = g(d, &)

€i

> bi(d,e)] = mid :=g;(d, e5)

€j

The first simplification is that we only consider a closing of this diagram n
zero or one step (strong confluence). Furthermore, we assume that the diagram
is closed by using the same summands j and i again, and moreover we only try

State Space Reduction by Proving Confluence 603

the same instance of summand ; and j. This situation is depicted in the following
picture (we left out the enabling conditions).
d ———-.__Tﬁ_) . d’ e
gJ(l 2 d— g;(d,e;)
lai(g;(d.e;),e:)

a4 (dxei) or T =

<4
9i(g;(d, e;), &)
9i(dses) = = + g;(gi(d, &), ;) gildes) =
Commutation of r-summand J with summand i can be expressed by the
following Boolean expression over the algebraic data theory. Note that these
formulae can be generated automatically for any linear process.

bi(d, ei) bi(gj (da ej)v e‘i) ;\\ (ai(d, e,') =T)
Y
g

N Rl B S A !
. . a;\a, e; = a;\g; 1€5), €4 A . N = g .
bj (d, e]) gi(gj (da ej)’ ei)3= g5 (ng(d; 61‘), ej) 1(d? e*) gj(¢ej)

If T-summand § commutes with all summands i (including j), it can be safely
marked as a confluent r-summand. As strong confluence implies confluence, the
transitions generated by r-summand J will form a confluent subset in the sense of
Definition 2. Because the union of two confluent subsets constitutes a confluent
subset, it is safe to label multiple summands in the same linear process.

3.3 Automated Theorem Prover

In order to prove formulae of the above kind, we have built a theorem prover
for Boolean combinations over a user-defined algebraic data type. In (17] we
show how an extension of binary decision diagrams (BDD) eni'mnoed with term
rewriting can be applied to these formulae. This is along the lines of the BDDs
extended with equality developed in [8]. Given a formula, the prover returas an
equivalent but ordered BDD. If this BDD equals TRUE, the pair (i,j) mﬁt’;
If the resulting BDD doesn’t equal TRUE, then the formula co %
proved, and 7T-summand j cannot be marked as confluent. Note tm mg
be due to the fact that it is not confluent, or due to the fact that the prover
inherently incomplete (simple equalities over an abstract dﬁ;ﬁ type Wmm xid
able already, let alone arbitrary Boolean exp’ressmns)‘. In 6 xﬂwﬁa‘ ver
provides some diagnostics, on the basis of wh}c..h user xntemctm« P rhat.
The user can add equations to the data _specxﬁcaﬂon, k(;r m@&fﬂ model
It is possible to add new equations, Prowded 'the)f l:i?mt on. which i beyond
Proving correctness of the new equations requires mmwd &i;:bﬁ! mamwﬁy, or
our theorem prover. The new equations could be p
i i ive theorem prover. L
usurf1 2051;2&2:;:3 u;geer?g:;nula is not valid in the initial model, but it M;i:d h:;f
) . pply an invariant [rv

for reachable states d. In this case, the user may supp

604 Stefan Blom and Jaco van de Pol

confluence formulae are proved under the assumption Inv(d). Of course such an
invariant must be checked separately. With our theorem prover, one can check
whether Inv holds initially, and is preserved by all summands 1:

Inv(dg) and for allie I: b;(d, e;) A Inv(d) — Inv(gi(d,e;))

4 Optimization by Symbolic Prioritization

Combining the previous sections, we can now mark certain transitions as being
confluent by using an automated theorem prover, and subsequently generate a
reduced state space by the on-the-fly reduction algorithm. However, the conflu-
ence marks can also be used to apply an optimization to the specification, ie.
on the symbolic level. Let transition j be a deterministic transition (i.e. without
local variables) which is marked as confluent:

[b5(d)} = 7ei d := g;5(d)

Now because the j summand is confluent, it may be given priority to other
summands, as long as loops are avoided. To avoid loops, we will only give sum-
mand j priority just after a non-marked (visible or non-visible) transition. So
let another summand ¢ be given, which is not marked as confluent:

Z[bi(d’ ei)] = ai(d,e;); d := gi(d, &)

€i

Now, if we can prove that j is always enabled after the i-transition, we can
combine the ¢ and j summand in one step. Enabledness of j can be represented
by the formula b;(d,e;) — b;(g9:(d, e;)). This formula is sent to the prover, and
upon success, we modify summand i to become:

> bi(d,en)] = ai(d, ei); d = g;(gi(d, :))

€

We call this transformation symbolic prioritization. One advantage of this sym-
bolic optimization is that the intermediate state g;(d,e;) doesn’t have to be
explored during state space generation. Another advantage is that this opti-
mization often gives rise to a cascade of other possible optimizations, such as
removal of dead code and unused variables. For instance, summand j might be
unreachable after the optimization. This can be checked by proving that —b; is
an invariant. Other summands may become unreachable as well, and variables
used in them may become useless and can be removed or given a dummy value.

A very interesting effect is that we can now possibly mark more transitions
as confluent. Recall that we only mark “strong confluence”, where a diverging
pair is closed in zero or one step. After symbolic prioritization, we might detect
confluence also when the diverging pair can be closed in two steps, as illustrated
in the diagram below. Of course, this process can be iterated.

State Space Reduction by Proving Confluence 605

original state space(|reduced state space total costs J
system states[transitions|| states| transitions|| states[transitions|
abp 97 122 29 54 97 98
brp 1952 2387|| 1420 1855|| 1952 2275
mutex 96 192 26 46 56 75
DKR(3) 67 124 2 1 20 19
DKR(5) 864 2687 2 1 32 31
DKR(7) 18254 77055 2 1 72 71
Firewire(10)|| 72020 389460(| 6171 22668|| 8443 23326
Firewire(12)|| 446648] 2853960]] 27219 123888|] 40919 127016
Firewire(14)(|2416632| 17605592([105122 544483167609 557419
Liftl 38000 112937]| 12826 38151 27292 48684
Lift2 223720 712593(69987 231365{166645 300051
Liftl + prio|] 38000 112937|| 12826 38151|| 16404 39991
Lift2 + prio|| 223720 712593(| 69987 231365|| 88741 239958

Fig. 2. Benchmarks for confluence detection and on-the-fly reduction

- _—
2 2
all 1la.
becomes after prioritization a1 lle
T°l3 2 3lr° 2
— —

T

In the system on the left, automatic confluence marking will not detect the
confluence of 7-summand (2), because the divergence with a-summand (1) can-
not be closed in one step. However, typically -summand (3) will be detected to
be confluent, because no other summands are enabled in its source state. The
marking of summand (3) is denoted by the 7.-label. Note that after a—snmmwd
(1) it is always possible to perform the marked 7.-summand (3). Hence symbolic

prioritization can be applied, and we obtain the system on the right. In
i t will be detected by a

situation summand (2) becomes strongly confluent, so i ‘
second application of automatic confluence detection. Due to the Oﬂﬂﬁﬂw of
hm will pow visit a single path

summand (2), the state space generation algorit ngle pat
through this graph. Also note that summand (3) becomes unreachable in this

example.

5 Applications

We applied our method to finite instances of sevgra.l d&smbammaimmm
protocols and industrial case studies. A number of efp?ﬂmmwi ﬂ/m" . Y
in detail in [17]. The uCRL-code is available via http://www.cwWi. vapo

606 Stefan Blom and Jaco van de Pol

CAVO2-experiments. Figure 2 shows the reduction obtained by confluence de-
tection and on-the-fly reduction. For each system, we list the size of the original
and the reduced state space, and also — in order to allow fair comparisons — the
total costs including the number of nodes and transitions that are visited during
the TSCC-computation.

The first rows refer to the alternating bit protocol, the bounded retransmis-
sion protocol, and a mutual exclusion algorithm. Furthermore, DKR(n) refers
to the DKR leader election protocol with n parties; Firewire(n) to the Firewire
Tree Identify protocol for n components from the IEEE 1394 bus standard; and
the lift entries refer to a case study with distributed lifts [7], used for lifting car
trucks by several lift legs. For the lift systems we also denote the cost reduction
obtained after symbolic prioritization.

As a conclusion, we note that the contribution of confluence reduction to toy
examples is rather modest. However, on the industrial case studies (Firewire,
Lift) the reduction is notable. On the DKR protocol the reduction is even dra-
matic (the number of visited states goes from exponential down to nlogn). We
now discuss two experiments in more detail.

5.1 Leader Election Protocol

In the DKR (Dolev-Klawe-Rodeh) leader election protocol [5], n parties are
connected in a ring by n channels, modeled as unbounded queues. These parties
exchange messages, which are not visible for the outside world. After a finite
number of messages, the party with the highest identification performs the action
“I'm the leader”.

This algorithm allows for a remarkable state space reduction, viz. from ex-
ponential to linear in the number of parties. The theorem prover detects that
all T-summands are confluent, even when n is unknown. Given a concrete num-
ber of parties, the generation algorithm finds a completely deterministic path
representing the whole state space. So the state space is immediately reduced
to a single transition, labeled “I'm the leader”. We remark that also the tra-
ditional partial order reduction methods have been successfully applied to this
example (see also [1]).

5.2 Shared Data Space Systems

We also studied distributed systems based on shared data space architectures,
such as Splice [4]. A Splice system consists of a number of application processes,
that coordinate through agents, which are coupled via some network. The agents
locally maintain multi-sets of data items (the distributed data space), into which
applications can write new items, and from which applications can read items.
The agents distribute their items by asynchronously sending messages to each
other over the network.

Figure 3 depicts a simple Splice system, with a producer and a consumer. In
between, several workers independently take input items from their local storage,
perform some computation, and write output items back in the space. We want

State Space Reduction by Proving Confluence 607

e [[] [[

Network

Fig. 3. Splice architecture

original space||reduced state space||after prioritization
states| cost [|# states|] cost

Splice(1,2) 85362 15 75 9 45
Splice(2,2) 18140058 69 644 9 65
Splice(3,2) 77 297 5151 9 101
Splice(1,4) 77 83 743 25 169
Splice(2,4) 77 1661 29936 25 249
Splice(3,4) ??]| 31001 1057187 25 393
Splice(1,6) ?7? 317 3657 56] 425|
Splice(2,6) 77/ 14387 326832 56 630]
Splice(3,6) 77 77 77 56] 999

Fig. 4. Splice benchmarks with symbolic prioritization

to prove transparency of the number of workers. See [13] for the full case study,
which heavily relies on using our confluence reduction.

This communication mechanism is a-synchronous, and leads to much non-
determinism: messages from one agent are sent to the others in any order. Conse-
quently, the agents receive messages in various orders, even when they originate
from the same agent. By proving confluence, it is detected that all these differ-
ent orders are equivalent. In fact, the on-the-fly reduction algorithm coimpum
a reduced state space, as if there were only one global multi-set of data items.

Another reduction is possible within the workers. They read any message
from their agent, and write some computed result back. .N_ote that such tra.nsg
tions cannot be represented by super-deterministic transitions, because a wor.

can start with any message in the current set of its agent. Thereﬁoﬁ‘e,tradzt@mal
partial-order reduction methods, which are based on super-detergnmsm, fail on
this example. However, several such transactions commute, basmliy heezg;
(AU {a}) U {b} = (AU {b}) U{a}. Using confluence reduction, only &
transaction order is explored.

For this example, wI; also needed symbolic prioritization: althoug!? the ;{ﬁ
actions commute, the corresponding diagrams cazn only be closed in multiple
steps. This corresponds to the diagram in Section 4.

608 Stefan Blom and Jaco van de Pol

In Figure 4 we applied our reductions on the Splice(m,n) benchmarks, hav-
ing m workers and processing n input values. We show the number of generated
states, as well as the total number of visited states, including those used in the
TSCC search. The size of the original state space (first column) could only be
computed in a few cases, and even here we used a parallel machine. After one
application of confluence detection and on-the-fly reduction, in most cases the
state space could be generated, but this approach doesn’t scale well (middle two
columns). After symbolic prioritization more transitions could be proven confiu-
ent, and running on-the-fly reduction again results in pretty small state spaces
(last two columns).

As a final remark, we note that the size of the reduced space doesn’t depend
on the number of workers anymore. So this example has been solved nearly
symbolically in the number of workers.

References

1. R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model checking. In
J. C. M. Baeten and S. Mauw, editors, Proc. of CONCUR ’99, LNCS 1664, pages
98-113. Springer, 1999.

2. 8. C. C. Blom. Partial 7-confluence for efficient state space generation. Technical
Report SEN-R0123, CW1, Amsterdam, 2001.

3. S.C. C. Blom, W. J. Fokkink, J. F. Groote, 1. van Langevelde, B. Lisser, and J. C.
van de Pol. uCRL: A toolset for analysing algebraic specifications. In G. Berry, etal,
editor, Proc. of CAV 2001, LNCS 2102, pages 250-254. Springer, July 2001.

4. M. Boasson. Control systems software. IEEE Transactions on Automatic Control,
38(7):1094-1106, July 1993.

5. D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, 3(3):245-260,
September 1982.

6. R.J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555-600, 1996.

7. J. F. Groote, J. Pang, and A. G. Wouters. A balancing act: Analyzing a distributed
lift system. In S. Gnesi and U. Ultes-Nitsche, editors, Proc. of FMICS, pages 1-12,
Paris, France, 2001.

8. J. F. Groote and J. C. van de Pol. Equational binary decision diagrams. In
M. Parigot and A. Voronkov, editors, Proc. of LPAR 2000, LNAI 1955, pages
161-178. Springer, 2000.

9. J. F. Groote and J. C. van de Pol. State space reduction using partial -confluence.
In M. Nielsen and B. Rovan, editors, Proc. of MFCS 2000, LNCS 1893, pages 383~
393. Springer, 2000.

10. J. F. Groote, A. Ponse, and Y. S. Usenko. Linearization in parallel pCRL. Journal
of Logic and Algebraic Programming, 48(1-2):39-70, 2001.

11. J. F. Groote and M. A. Reniers. Algebraic process verification. In J. A. Bergstra,
A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra, chapter 17.
Elsevier, 2001.

12. J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theoretical
Computer Science, 170:47-81, 1996.

13.

14.

15.

16.

17.

18.

19.

20.

State Space Reduction by Proving Confluence 609

J. M. M. Hooman and J. C. van de Pol. Formal verification of replication on a
distributed data space architecture. In Proceedings of SAC 2002 (Madrid), pages
351-358. ACM, 2002.

R. Nalumasu and G. Gopalakrishnan. An efficient partial order reduction algorithm
with an alternative proviso implementation. Formal Methods in System Design,
20(3):231-247, 2002.

D. Peled. Partial order reduction: Linear and branching temporal logics and process
algebras. In Peled et al. [16], pages 233-258.

D. A. Peled, V. R. Pratt, and G. J. Holzmann, editors. Partial Order Methods tn
Verification, DIMACS Series 29. AMS, July 1997.

J. C. van de Pol. A prover for the uCRL toolset with applications ~ Version 0.1.

Technical Report SEN-R0106, CWI, Amsterdam, 2001.

R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

A. Valmari. Stubborn set methods for process algebras. In Peled et al. [16], pages

213-232.

M. Ying. Weak confluence and r-inertness. Theoretical Computer Science, 238:465-

475, 2000.

